top of page
  • Calculate the Mean for the following data set:

     

    Data Set = 5,10,11,14,9,6,12

      

       5+10+11+14+9+6+12=67

                   67/7                                    

                   9.57

 

  • Calculate the Median and Mode for the following data set:

    Data Set = 5,10,11,14,9,6,12

        

                       5,6,9,10,11,12,14

7/2=3.5...4th number=median

Median=10

Mode=There is no mode, all numbers are equal.

 

  • Calculate the Standard Deviation for the following data set:

     

    Data Set = 5,10,11,14,9,6,12

                          5,6,9,10,11,12,14

The mean for the data set is ≈ 9.57. Therfore μ is 9.57

 

                   =     âˆ‘(xi – μ)²
                   âˆš     n - 1

∑(xi – μ)²

=∑(5–9.57)² + (6-9.57)² + (9-9.57)² + (10-9.57)² + (11-9.57)² + (12-9.57)² + (14-9.57)²

=(-4.57)²+(-3.57)²+(-.57)²+(0.43)²+(1.43)²+(2.43)²+(4.43)²

=20.8849+12.7449+0.3249+0.1849+2.0449+5.9049+19.6249

=61.7143

= âˆš 61.7/9.57-1  âˆš 61.7/8.57  âˆš 7.199 2.68

 

  • Calculate the Standard Deviation for the following data set:

     

    Data Set = 6,16,8,4,9,14 and 4, 14, 4, 6,5,10

     

  • Calculate the Range for the following data sets:

     

    Data Set = 5,10,11,14,9,6,12  Range-14-5=9

  • Data Set =6,16,8,4,9,14          Range-16-4=12

 

 

 

 

 

•What are the upper and lower specification limit for the examples below?

1. 2.5 (+/- .005)  2.5+.005=2.505 Upper-2.6 2.5-.005=2.495 Lower-2.5

2. 3.5 (+/- .025)  3.5+.025=3.525 Upper-3.5 3.5-0.025=3.475 Lower-3.5

3. 4 (+/- .5)          4+.5=4.5 Upper-4.5 4-.5=3.5 Lower-3.5

•What is the standard deviation and ranges for the sets of numbers listed below?

1. 1,2,3,4,5

15/5=3=mean

 

2. 3,4,5,6,7

 

3. 3,6,9,12,15,18

 

4. 5,8,11,14,17, 20

 

5. 1,2,3,4,5,6,7,8,9,10

6. 3,20,25,101, 22, 6

7. 5,9,10,13,14,22,34

© Jayla G-T . Proudly created with Wix.com

  • facebook-square
  • Twitter Square
  • Google Square
bottom of page