Jayla Gray-Thomas' Online Portfolio

-
Calculate the Mean for the following data set:
Data Set = 5,10,11,14,9,6,12
5+10+11+14+9+6+12=67
67/7
9.57
-
Calculate the Median and Mode for the following data set:
Data Set = 5,10,11,14,9,6,12
5,6,9,10,11,12,14
7/2=3.5...4th number=median
Median=10
Mode=There is no mode, all numbers are equal.
-
Calculate the Standard Deviation for the following data set:
Data Set = 5,10,11,14,9,6,12
5,6,9,10,11,12,14
The mean for the data set is ≈ 9.57. Therfore μ is 9.57
= ∑(xi – μ)²
√ n - 1
∑(xi – μ)²
=∑(5–9.57)² + (6-9.57)² + (9-9.57)² + (10-9.57)² + (11-9.57)² + (12-9.57)² + (14-9.57)²
=(-4.57)²+(-3.57)²+(-.57)²+(0.43)²+(1.43)²+(2.43)²+(4.43)²
=20.8849+12.7449+0.3249+0.1849+2.0449+5.9049+19.6249
=61.7143
= √ 61.7/9.57-1 √ 61.7/8.57 √ 7.199 2.68
-
Calculate the Standard Deviation for the following data set:
Data Set = 6,16,8,4,9,14 and 4, 14, 4, 6,5,10
-
Calculate the Range for the following data sets:
Data Set = 5,10,11,14,9,6,12 Range-14-5=9
-
Data Set =6,16,8,4,9,14 Range-16-4=12
•What are the upper and lower specification limit for the examples below?
1. 2.5 (+/- .005) 2.5+.005=2.505 Upper-2.6 2.5-.005=2.495 Lower-2.5
2. 3.5 (+/- .025) 3.5+.025=3.525 Upper-3.5 3.5-0.025=3.475 Lower-3.5
3. 4 (+/- .5) 4+.5=4.5 Upper-4.5 4-.5=3.5 Lower-3.5
•What is the standard deviation and ranges for the sets of numbers listed below?
1. 1,2,3,4,5
15/5=3=mean
2. 3,4,5,6,7
3. 3,6,9,12,15,18
4. 5,8,11,14,17, 20
5. 1,2,3,4,5,6,7,8,9,10
6. 3,20,25,101, 22, 6
7. 5,9,10,13,14,22,34